3. Решение задач с помощью уравнений. Мерзляк (угл.)

 

§ 3. Решение задач с помощью уравнений.

Вам неоднократно приходилось решать задачи с помощью составления уравнений. Разнообразие решённых задач является лучшим подтверждением эффективности и универсальности этого метода. В чём же заключается секрет его силы?

Дело в том, что условия непохожих друг на друга задач удаётся записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.

Часто условие задачи представляет собой описание какой–то реальной ситуации. Составленное по условию уравнение называют математической моделью ситуации.

Конечно, чтобы получить ответ, уравнение надо решить. Для этого в алгебре разработаны различные методы и приёмы. С некоторыми из них вы уже знакомы, многие другие вам ещё предстоит изучить.

Найденный корень уравнения — это ещё не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии задачи.

Рассмотрим, например, такие задачи.

1) За 4 ч собрали 6 кг ягод, причём каждый час собирали одинаковое по массе количество ягод. Сколько ягод собирали за один час?

2) Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?

По условию этих задач можно составить одно и то же уравнение 4х = б, корнем которого является число 1,5. Но в первой задаче ответ «полтора килограмма ягод за час» является приемлемым, а во второй ответ «ягоды собирали полтора мальчика» — нет. Поэтому вторая задача не имеет решений.

При решении задач на составление уравнений удобно придерживаться такой последовательности действий.

⊕ ⇒ 1. По условию задачи составить уравнение (сконструировать математическую модель задачи).
2. Решить полученное уравнение.
3. Выяснить, соответствует ли найденный корень смыслу задачи, и записать ответ.

Эту последовательность действий, состоящую из трёх шагов, можно назвать алгоритмом решения текстовых задач.

ПРИМЕР 1. Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за б дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?

Решение. Пусть рабочий изготавливал ежедневно х деталей. Тогда по плану он должен был изготавливать ежедневно (х– 12) деталей, а всего их должно было быть изготовлено 8(х– 12). На самом деле он изготовил 6х деталей.

Так как по условию значение выражения 6х на 22 больше значения выражения 8(х – 12), то получаем уравнение:
6х – 22 = 8(х – 12).
Тогда 6х – 22 = 8х – 96;
6х – 8х = –96 + 22;
—2х = –74;
х = 37.

Ответ: 37 деталей. ■

ПРИМЕР 2. Велосипедист проехал 65 км за 5 ч. Часть пути он ехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?

Решение. Пусть велосипедист ехал х ч со скоростью 10 км/ч. Тогда со скоростью 15 км/ч он ехал (5 – х) ч. Первая часть пути составляет 10х км, а вторая — 15(5 – х) км. Всего велосипедист проехал 10х + 15(5 – х) км. Поскольку весь путь составил 65 км, то получаем уравнение:

10х + 15(5 – х) = 65.
Отсюда 10х + 75 – 15х = 65;
–5х = –10; х = 2.
Следовательно, со скоростью 10 км/ч он ехал 2 ч, а со скоростью 15 км/ч — 3 ч.

Ответ: 2 ч, 3 ч. ■

 


Ознакомительная версия для принятия решения о покупке книги: Мерзляк, Поляков: Алгебра. Углубленный уровень: 7 класс. Учебник — М.: Вентана-Граф, 2019 (Российский учебник). 3. Решение задач с помощью уравнений.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *