ГДЗ Атанасян Учебник. Задания 333 — 350

Геометрия ГДЗ Атанасян Учебник. Задания 333 — 350. Решебник практических заданий и задач из учебника «Геометрия 7 класс» УМК Атанасян, Бутузов и др. Задачи повышенной трудности к главам III и IV. Ответы на задания и задачи представлены для родителей в конце статьи.

Геометрия (Атанасян) Учебник

Задачи повышенной трудности к главам III и IV

  1. Прямые, содержащие биссектрисы внешних углов при вершинах В и С треугольника АВС, пересекаются в точке О. Найдите угол ВОС, если угол А равен α.
  2. Через каждую вершину данного треугольника проведена прямая, перпендикулярная к биссектрисе треугольника, исходящей из этой вершины. Отрезки этих прямых вместе со сторонами данного треугольника образуют три треугольника. Докажите, что углы этих треугольников соответственно равны.
  3. В каждом из следующих случаев определите вид треугольника: а) сумма любых двух углов больше 90°; б) каждый угол меньше суммы двух других углов.
  4. Докажите, что угол треугольника является острым, прямым или тупым, если медиана, проведённая из вершины этого угла, соответственно больше, равна или меньше половины противоположной стороны.
  5. Внутри равнобедренного треугольника АВС с основанием ВС взята такая точка М, что ∠MBC = 30°, ∠MCB= 10°. Найдите угол АМС, если ∠BAC = 80°.
  6. Докажите, что любой отрезок с концами на разных сторонах треугольника не больше наибольшей из сторон треугольника.
  7. Отрезок ВВ1 — биссектриса треугольника АВС. Докажите, что ВА > В1А и ВС > В1С.
  8. Внутри треугольника АВС взята такая точка D, что AD = AB. Докажите, что АС > АВ.
  9. В треугольнике АВС сторона АВ больше стороны АС, отрезок AD — биссектриса. Докажите, что ∠ADB > ∠ADC и BD > CD.
  10. Докажите теорему: если в треугольнике биссектриса является медианой, то треугольник равнобедренный.
  11. Две стороны треугольника не равны друг другу. Докажите, что медиана, проведённая из их общей вершины, составляет с меньшей из сторон больший угол.
  12. В треугольнике АВС стороны АВ и АС не равны, отрезок AM соединяет вершину А с произвольной точкой М стороны ВС. Докажите, что треугольники АМВ и АМС не равны друг другу.
  13. Через вершину А треугольника АВС проведена прямая, перпендикулярная к биссектрисе угла А, а из вершины В проведён перпендикуляр ВН к этой прямой. Докажите, что периметр треугольника ВСН больше периметра треугольника АВС.
  14. В треугольнике АВС, где АВ < АС, отрезок AD — биссектриса, отрезок АН — высота. Докажите, что точка Н лежит на луче DB.
  15. Докажите, что в неравнобедренном треугольнике основание биссектрисы треугольника лежит между основаниями медианы и высоты, проведённых из этой же вершины.
  16. Докажите, что в прямоугольном треугольнике с неравными катетами биссектриса прямого угла делит угол между высотой и медианой, проведёнными из той же вершины, пополам.
  17. Медиана и высота треугольника, проведённые из одной вершины угла треугольника, делят этот угол на три равные части. Докажите, что треугольник прямоугольный.
  18. В треугольнике АВС высота ААХ не меньше стороны ВС, а высота ВВХ не меньше стороны АС. Докажите, что треугольник АВС — равнобедренный и прямоугольный.

 

ОТВЕТЫ на задания 333 — 350:

 


Вы смотрели: ГДЗ Атанасян Учебник. Задания 333 — 350. Решебник практических заданий и задач из учебника «Геометрия 7 класс» УМК Атанасян, Бутузов и др. Задачи повышенной трудности к главам III и IV. Ответы на задания и задачи.

Вернуться к Списку заданий учебника по Геометрии 7 класс Атанасян.

Добавить комментарий

Ваш адрес email не будет опубликован.