Ознакомительная версия с цитатами из учебника для принятия решения о покупке книги: Алгебра. 7 класс. Учебник в 2 частях. Часть 1 / А.Г. Мордкович и др. (2019, 2020). УЧЕБНИК. Глава 1. Математический язык и модель (теория). § 1. Числовые и алгебраические выражения.
Часть 2-я Вернуться к Оглавлению учебника ГДЗ 1.1 — 1.47
ГЛАВА 1. МАТЕМАТИЧЕСКИЙ ЯЗЫК. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
§ 1. Числовые и алгебраические выражения (теория)
Вы смотрели ознакомительная версию с цитатами из учебника для принятия решения о покупке книги: Алгебра. 7 класс. Учебник в 2 частях. Часть 1 / А.Г. Мордкович и др. (2019, 2020). Глава 1. Математический язык и модель (теория). § 1. Числовые и алгебраические выражения
Часть 2-я Вернуться к Оглавлению учебника ГДЗ 1.1 — 1.47
А теперь вместе проанализируем, какие сведения из математики нам пришлось вспомнить в процессе решения примера (причём не просто вспомнить, но и использовать). 1. Порядок арифметических действий. 2. Переместительный закон сложения: а + b = b + а. 3. Переместительный закон умножения: ab = bа. 4. Сочетательный закон сложения: а + b + с = (а + b) + с = а + (Ь + с). 5. Сочетательный закон умножения: abc = (ab)c = а(bс). 6. Понятия обыкновенной дроби, десятичной дроби, отрицательного числа. 7. Арифметические операции с десятичными дробями. 8. Арифметические операции с обыкновенными дробями. 9. Основное свойство обыкновенной дроби: (значение дроби не изменится, если её числитель и знаменатель одновременно умножить на одно и то же число или разделить на одно и то же число, отличное от нуля). Это свойство позволило нам преобразовать дробь — к виду — (числитель и знаменатель дроби — одновременно умножили на одно и то же число 3). Оно же позволило нам сократить дробь (числитель и знаменатель дроби одновременно разделили на одно и то же число 5). 10. Правила действий с положительными и отрицательными числами. Всё это вы знаете, но ведь всё это — алгебраические факты. Таким образом, некоторое знакомство с алгеброй у вас уже состоялось в младших классах. Основная трудность, как видно уже из примера 1, заключается в том, что таких фактов довольно много, причём их надо не только знать, но и уметь использовать, как говорят, «в нужное время и в нужном месте». Вот этому и будем учиться. И последнее, чтобы закончить обсуждение примера 1. То число, которое получается в результате упрощений числового выражения (в данном примере это было число ), называют значением числового выражения. И Алгебраические выражения Если дано алгебраическое выражение, то можно говорить о значении алгебраического выражения, но только при конкретных значениях входящих в него букв. Поскольку буквам, входящим в состав алгебраического выражения, можно придавать различные числовые значения (т.е. можно менять значения букв), эти буквы называют переменными. Найти значение алгебраического выражения Решение а) Соблюдая порядок действий, последовательно находим: 1) а2 + 2аЬ + b2 = I2 + 2 • 1 • 2 + 22 = 1 + 4 + 4 = 9; 2) а + Ь=1 + 2 = 3; 3) а — b = 1 — 2 = -1; 4) (а + b)(а — Ь) = 3 • (-1) = -3; е-ч а2 + 2аЬ + й2 _ 9 _ о ’ (а + &)(а — Ь) -3 б) Аналогично, соблюдая порядок действий, последовательно находим: в) Снова, соблюдая порядок действий, последовательно находим: Смотрите, знаменатель равен нулю, а на нуль делить нельзя! Что это значит в данном случае (и в других аналогичных случаях)? Это значит, что при а — b = — заданное алгебраическое выражение не имеет смысла. Используется такая терминология: если при конкретных значениях букв (переменных) алгебраическое выражение имеет числовое значение, то указанные значения переменных называют допустимыми; если же при конкретных значениях букв (переменных) алгебраическое выражение не имеет смысла, то указанные значения переменных называют недопустимыми. Так, в примере 2 значения а = 1 и 6 = 2, а — 3,7 и b = -1,7 — допустимые, тогда как значения а и b — недопустимые (более точно: первые две пары значений — допустимые, а третья пара значений — недопустимая). Вообще в примере 2 недопустимыми будут такие значения переменных а, Ь, при которых либо а + b = 0, либо а — b = 0. Например, а = 7, b = -7 или а = 28,3, b = 28,3 — недопустимые пары значений; в первом случае а + Ь = 0, а во втором случае а — b = 0. В обоих случаях знаменатель заданного в этом примере выражения обращается в нуль, а на нуль, повторим ещё раз, делить нельзя. Теперь, наверное, вы и сами сможете придумать как допустимые пары значений для переменных а, Ь, так и недопустимые пары значений этих переменных в примере 2. Попробуйте! Пример 2в) на самом деле мы решали плохо (некультурно), поскольку сделали ряд лишних, ненужных вычислений. Надо было сразу заметить, что при а — и b — — знаменатель обращается в нуль, и объявить: выражение не имеет смысла! Но, как говорится, сразу замечает тот, кто знает, что надо замечать. Этому и учит алгебра. Если бы мы с вами решали пример 2 позднее, то сделали бы это лучше. Мы бы смогли преобразовать выражение к более простому виду , а тогда, согласитесь, гораздо проще было бы и вычислять. А вот почему верно равенство пока мы сказать не можем. На этот вопрос ответим позднее (см. § 41).
Вопросы для самопроверки 1. Сформулируйте определение числового выражения. 2. Приведите три примера числового выражения. 3. Что называют алгебраическим выражением? 4. Используя переменные тип, составьте два алгебраических выражения. 5. Что такое значение числового выражения? 6. Что такое значение алгебраического выражения? 7. Найдите значение выражения — — при х = 1, х = 2,5. 8. Сформулируйте переместительный закон сложения. 9. Сформулируйте переместительный закон умножения. 10. Сформулируйте сочетательный закон сложения. 11. Сформулируйте сочетательный закон умножения. 12. Сформулируйте основное свойство дроби. 13. В чём состоит правило сложения отрицательных чисел? 14. В чём состоит правило сложения чисел с разными знаками? 15. Как вы понимаете фразу: «Заданное алгебраическое выражение не имеет смысла»? Приведите пример такого выражения. 16. Какие значения переменных называют допустимыми? 17. Какие значения переменных называют недопустимыми?
Здравствуйте!. Есть ли возможность скачать учебник в двух частях?
К сожалению, это запрещено авторским правом.
Можно скачать все страницы
нет
а можно фотографировать страницы и потом печатать?